COVID-19 Evidence Accelerator Collaborative

Lab Meeting # 41

Thursday, September 23rd, 2021, 3 - 4:00 pm ET

Call Summary

Overview of Lab Meeting 41

The focus of Lab Meeting 41 was Real World Data (RWD) for tracking the performance of COVID-19 vaccines. First, Dr. Richard Forshee of the Food and Drug Administration (FDA)’s Center for Biological Evaluation and Research (CBER), described how FDA uses data from claims and electronic health records (EHR) data in a rapid cycle analysis to identify potential adverse events (AE) of interest associated with COVID-19 vaccines. Second, Dr. Yinong Young-Xu of the White River Junction Veterans Affairs (VA) Medical Center showed how RWD was used to determine how the Delta variant impacted vaccine effectiveness.

FDA Monitoring COVID-19 Vaccine Safety

Dr. Richard Forshee & Dr. Steven Anderson, Office of Biostatistics & Epidemiology, CBER, FDA

FDA Active Surveillance Program for Vaccines Using RWD

- Uses population-based healthcare databases to conduct safety studies of vaccines including:
 1. Centers for Medicare & Medicaid Services (CMS) (>50 million persons – claims data, >= 65 years old in the US)
 2. CBER Biologics Effectiveness Safety (BEST) Program (>50 million persons (EHR data) and >100 million persons (claims data), <65 years old in US, includes Optum, CVS Health and HealthCore data sources)

Adverse Events of Special Interest (AESI)

- No causal relationship between events and receipt of vaccines at the time of the Emergency Use Authorization (EUA).
- Identified a list of potential AESI to include in rapid cycle analysis (RCA) based on previous experience with other vaccines and consultation with medical experts
- 16 AESI included in analysis, including: acute myocardial infarction, bell's palsy, anaphylaxis, narcolepsy, pulmonary embolism, etc.

Signal Detection Results from Rapid Cycle Analysis (RCA), CMS and Optum

- Results obtained from Near Real-Time Surveillance for CMS and Optum
- RCA detected several statistically-significant signals associated with four potential AESI for the Pfizer vaccine
 - Pulmonary embolism (RR = 1.54)
 - Acute myocardial infarction (RR = 1.42)
 - Disseminated intravascular coagulation (RR = 1.91)
 - Immune thrombocytopenia (RR = 1.44)
• Anaphylaxis (identified across all vaccines as an AESI) more expected than others, relatively common with receipt of vaccines
• Results indicate no signals for any vaccine with Near Real-Time Surveillance for Optum
• Near Real-Time Surveillance in CMS and Optum did not detect signals for Myocarditis/Pericarditis, Thrombosis with thrombocytopenia syndrome (TTS), or Guillain-Barre Syndrome (GBS)
• FDA released public statement indicating there may be an elevated risk of four AESI for persons 65-years and older receiving the Pfizer vaccine.
 o May not be true safety concerns, conducting controlled follow-up analyses to determine whether events are actually linked to receipt of the Pfizer vaccine.
 o Need to carefully evaluate Pfizer signals because Pfizer was initially given to a target population of people with greatest COVID risk, also the group most vulnerable to AESI in analysis.
 o This analysis did not do anything to identify or control for risk factors for these AESI, signals could be due to the how the vaccines were rolled out among higher-risk populations.

Impact of Delta on Vaccine Effectiveness: VA COVID Vaccine Surveillance
Dr. Yinong Young-Xu, ScD, MA, MS, Clinical Epidemiology Program, White River Junction VA Medical Center

Veterans Health Administration (VHA) Nationwide Vaccine Effectiveness and Delta Prevalence Over Time

• As Delta prevalence grew, vaccine effectiveness (VE) decreased. Notified VHA leaders by June that the vaccine was not working as well against new variant.

Waning vs. Breakthrough

• Effectiveness of vaccines typically “wane” as they get older.
 o Estimated that COVID VE wanes an average of 3% points every one-month.
• Effectiveness of vaccines can also be challenged by variants that emerge over time --> Breakthrough infections
• Behaviors were also changing (mask-wearing decreasing, opening back up, etc.) while the variants were circulating
• Wanted to determine whether VE was waning or if it was due to Delta:
 o Compared a January cohort (February, March, April, pre-Rise in Delta variant) with a May cohort (June, July, August, post-Rise in Delta variant) to better isolate the effect of the variant
 o Observed 19-23% point drop in VE over time with increased prevalence of Delta.
 o When adjusting for age, observed a 29% point drop in VE due to Delta variant for populations over 65-years-old
• Estimated that the Delta variant causes an average of 21% point drop in VE

<table>
<thead>
<tr>
<th>Adjusted VE (%), 95% Confidence Interval) against infection by Full Vaccination Month</th>
<th>(January cohort)</th>
<th>(May cohort)</th>
<th>Horizontal difference is due to “Delta”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st month</td>
<td>Feb: 82 (79-85)</td>
<td>June: 63 (42-77)</td>
<td>-19</td>
</tr>
<tr>
<td>2nd month</td>
<td>Mar: 81 (75-85)</td>
<td>July: 58 (12-80)</td>
<td>-23</td>
</tr>
<tr>
<td>3rd month</td>
<td>April: 79 (74-84)</td>
<td>Aug: 55 (41-61)</td>
<td>-22</td>
</tr>
<tr>
<td>Vertical difference is due to WANNING (duration of effectiveness)</td>
<td>-3</td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>Adjusted VE against hospitalization</td>
<td>89 (80-94)</td>
<td>82 (78-86)</td>
<td>-7</td>
</tr>
<tr>
<td>Age 65+</td>
<td>87 (80, 91)</td>
<td>58 (41, 70)</td>
<td>-29</td>
</tr>
<tr>
<td>Age < 65</td>
<td>89 (75, 95)</td>
<td>83 (70, 91)</td>
<td>-6</td>
</tr>
</tbody>
</table>

Natural Immunity vs. VE Against Re-infection

• Higher incidence (per 1000 person/100 days) of re-infection among previously infected unvaccinated group (2.7) compared to vaccinated groups (Pfizer – 1.4, Moderna – .9) among ages 18+
• Highest rate of infection among unvaccinated, previously infected population ages 65+ (4.9) compared to vaccinated 65+ groups (Pfizer – 1.5, Moderna – 1.2)
• Possible that natural immunity protects against Delta more than or similarly to vaccines