COVID-19 Evidence Accelerator Collaborative

Lab Meeting # 42

Thursday, October 7th, 2021, 3 - 4:00 pm ET

Call Summary

Overview of Lab Meeting 42

Lab Meeting 42 featured three presentations on using various real-world data (RWD) sources to support pandemic response. First, we heard from Dr. Evgeniy Gabrilovich & Tomer Shekel of Google Health about their use of anonymized Google Search data for near real-time monitoring of the spread of COVID-19. Second, Oscar Wahltinez and Philip Nelson shared how they are aggregating data from sources around the world to create a large repository of COVID-19 epidemiologic and vaccine data that can support decision-making. Finally, Dr. Donald Chalfin and Dr. Vivek Singh of Siemens Healthineers described their development of a new artificial intelligence (AI) based algorithm that can be used by hospitals to predict a patient’s risk for developing severe COVID-19.

Supporting Syndromic Surveillance and COVID-19 Forecasting with Symptom Search Trends

Dr. Evgeniy Gabrilovich & Tomer Shekel, Public & Environmental Health Team, Google Health

COVID & Population Health Surveillance

- Early on capacity to test for COVID-19 infection was limited → delays in test results → limited ability to detect and respond to new outbreaks
- Stay at home orders → restricted access to medical facilities → decreased monitoring of persons with chronic disease & decreased ability to identify new cases of chronic disease
- Need: New methods/approaches for monitoring population health

Google Search Data

- Aggregated and anonymized search data could compliment traditional monitoring methods
 - Large cohort with broad demographic coverage
 - Broad yet granular geographic coverage
 - Near real-time data
 - Low-cost data collection
- Search data help to reveal those experiencing symptoms, those seeing a doctor/ getting tested, those visiting urgent care/ER, those admitted to a hospital

COVID-19 Symptom Search Dataset

- Aiming to augment traditional public health data sources
- Public dataset showing anonymized search trends overtime for 400+ health symptoms, signs, and conditions (2017 to present)
• Data updated daily at the county level (or at equivalent geo-granularity)
• Data available for the United States, United Kingdom, Australia, New Zealand, Ireland, and Singapore
• Key research & product opportunities:
 1. Real-time early warning systems and improved disease-spread models using COVID-19 symptom searches
 2. Identifying secondary impacts of COVID-19 (e.g., increase in depression) to catalyze action
 3. Enabling large-scale epidemiology research (COVID-related or in other disease areas) by external researchers

Findings
• Searches for Ageusia & Anosmia closely correlated with COVID-19 case counts and hospitalizations. Trends reflected outbreak intensity across different states.

Search Data for COVID Forecasting: Google Cloud AI Research
• Symptoms searches (cough, anosmia, fever, chest pain, infection, chills, shortness of breath) among top-ranked features for the fitted compartmental model rates, especially for hospitalization rate.
• Ablation studies show that for the US State-level model, symptoms search features yield ~13% MAE improvement for confirmed forecasts and ~4% MAE improvement for death forecasts
• Used by Harvard GHI to optimize testing allocations, US states to inform social distancing measures and re-opening decisions, US DoD to allocate resources, etc.
• Used by Carnegie Mellon (Delphi group) to predict (at the hospital referral region level) whether there will be a relative rise in cases by 25% in the next 7 days.

COVID-19 Open Data

Oscar Wahltinez, Google

Google’s Response to COVID-19
• Exposure notifications
• Surfacing authoritative information in search
• Google.org: $100 million + technical expertise
• Epidemiological modeling toolkit

Epidemiology Modeling Toolkit
• Set of resources made available by Google to equip modeler and policy makers with the necessary tools to make informed decisions on how to best address the pandemic.
• Provides: Public aggregations of external data, evaluation and release of Google datasets, and publication/open sourcing of models, simulators, techniques

Key Tenets
1. **Easy to use** – easily accessible, open-source data, enables researchers/users to explore & use data
2. **Automated** – able to be maintained in the long term
3. **Transparent** – clear communication about where data comes from and what is done to it
4. **Reproducible** – open-source, should be able to be cloned by other researchers

What is COVID Open Data

- One of the largest repositories of COVID-19 epidemiological data with a powerful set of covariates in one place.
- Unique in the way it merges daily time-series, multiple international sources, at a fine spatial resolution, using a consistent set of region identifiers.
 - Epidemiological data – covid cases and deaths, good granularity globally (most areas have data at county/equal municipality-level)
 - Vaccination data – expanding coverage of these data globally, not as granular as epidemiologic data
- Easy access to relevant data from over 20,000 distinct global locations
- Empowers users to build data visualizations, mathematical models, AI/ML training, etc.
- What’s Inside?
 - Collection of datasets structure using star data schema, indexed by time & location.
 - 8 data categories: vaccinations (deployment, access, insights), epidemiology, hospitalizations, demographics, mobility reports, google search trends, government interventions (Oxford, Law Atlas), economy, geography, weather
 - Epidemiological data, hospitalizations, and demographics data are stratified by age and sex

Use of COVID-19 Open Data

- Used by researchers & data scientists for a range of informative analyses
- Used by policymakers & “decision makers” to make impactful public policy:
 - Planning safe returns to work, masking/social distancing/vaccination policy planning
 - To support community-based testing initiatives

The Atellica COVID-19 Severity Algorithm

Donald Chalfin, MD, MD, MPH & Vivek Singh, PhD, Siemens Healthineers

AI’s Role Across the COVID-19 Patient Pathway

- **Diagnosis** – diagnostic testing to determine whether a patient has COVID-19
- **Prognosis & Therapy** – lab testing, hematology/hemostasis labs, blood glucose tests, CT, C-arm, X-ray, ultrasounds, to determine how severe a patients’ infection is and how it should be treated
- **Follow-up** – CT, X-ray, C-arm, Ultrasound, Immuno/chemistry/hematology lab tests, molecular lab tests, to determine whether a patient is recovered from COVID-19

COVID Challenges AI Can Help Solve

- How to prioritize allocation of previous ICU beds?
• How do you determine which patients are at highest risk of severe illness and complications?

Scientific Approach to Create the Algorithm

• COVID-19 Severity
 o Uncontrolled inflammation (cytokine storm) causes severe manifestation of COVID-19
 o Severity is further exacerbated by various clinical comorbidities
 o Lab markers capturing immune response and various inflammation and coagulation processes could be early predictors of severity

• Multi-site Collaboration
 o Establishing outcome-matched data-focused collaborations is key for developing an algorithm based on retrospective datasets
 o Clinical utility and usefulness of a CDS predictive system needs to be established
 o An agile prospective study is required to create evidence require to establish clinical utility

• AI Predictive Algorithm
 o Leveraging AI Factory to perform analysis using an updated version of Deep Profilter
 o Achieved good results for predicting mortality (AUC > .84) based on multi-site test cohort of 4302 cases
 o Inroads to developing Multi-Analyte Algorithmic Assays for other clinical indications

Atellica COVID-19 Severity Algorithm

• Based on our knowledge of the biology of COVID-19/ key processes associated with the disease, developed an algorithm designed to support prediction of which COVID-19 positive patients may experience severe illness
• Collaborated with healthcare institutions in Atlanta, Houston, New York, and Madrid to collect and analyze de-identified patient data
• Created AI-based algorithm designed to predict likelihood of acute respiratory failure, end organ failure, in-hospital 30-day mortality
• Algorithm trained using combined data source of ~14,500 cases
• Algorithm considers patient age and 9 laboratory measured biomarkers (D-dimer, LDH, Lymph%, Eos%, creatinine, CRP, FERRITIN, INR, Troponin-I all generated within first three days of hospitalization)
 o Investigational use only – evaluations to establish clinical utility are in progress

Data Collection Timeline

• Data collection begins when patient presents at ER with symptoms/positive test and continues until mortality or discharge from the hospital
• Based on data collected (lab tests, respiratory function measures, other organ function measures), case is assigned a severity score 0-4
AI-Based Severity Prediction Algorithm

- Challenges
 - Combination of categorical and continuous data sources
 - Reference ranges unknown
 - Implicit (sub) population-based data imputation might be required
 - Higher order (non-linear) relationship among data sources in a multi-variate setting making decision boundary to separate various sub-populations complex

- Solutions
 - Combinatorial selection of groups of data sources and performing ablation studies
 - Explicit data normalization parametrization folded into the training
 - Implicit data projection and imputation through extensive use of VAE (trained through auto-reconstruction loss with stochastic connections)
 - Perform classification and regression on the lower dimensional latent space (distilled down version of the input data)
 - Bootstrapping to est. confidence intervals for performance of cross-validation experiments

- Training/Testing Model
 - Full Model -- 57 lab measurements (within 3 days of submission), demographics (age, BMI), 6 comorbidities
 - Parsimonious Model – 10 parameters, 9 lab markers + age
 - Baseline Model – only considered IL6
 - Filtered out patients with <4 lab markers taken <3 days of admission
 - No overlap between training and testing datasets (date ranges different for each)
 - AUC = .84 +/- .01 for detecting severe cases leading to mortality

Sub-group Analysis Mortality TTE from Admission

- 69 Lab Parameters + 11 Comorbidities
 - Prediction accuracy highest for mortality events closest to the admission
 - Prediction accuracy holds up even for mortality events third week after the admission

- 9 Lab Parameters + Age
Prediction accuracy similar to the full model for mortality events closest to admission
Prediction accuracy degrades for mortality events second week after the admission (may be due to other confounding factors)

Next Steps for Atellica’s COVID-19 Severity Algorithm

1. **Completion of the Investigational Use Only evaluation at La Paz University Hospital** – In progress, blinded observational prospective study with the predictive model automatically generated for COVID-19 patients as part of the test panel ordered by physicians and directly integrated within workflow.

2. **Quantitative Performance Analysis** – assessment and comparison of the predictive model’s actual performance compared to design and evaluation of the perceived clinical value impact

3. **Determination to Pursue Clinical Use** – If warranted, complete project activities to make algorithm available for use as a Class I, exempt non-device CDS based on US regulatory guidance.

Opportunities for Collaboration

a) **De-identified Data for Additional Studies** – seeking additional sources of de-identified data including confirmed outcomes for COVID-19 patients to investigate additional scenarios.

b) **Evaluation Partners** – Looking for additional sites to participate in retrospective studies to help evaluate performance of the predictive model.